Dr KHUSHBOO VERMA

AS-203

ENGINEERING MATHEMATICS-II

ASSIGNMENT: FOURIER SERIES

- 1. DEFINE EULER'S FORMULA AND DIRICHLET'S CONDITION
- 2. DEFINE HALF RANGE SINE AND COSINE SERIES
- 3. OBTAIN FOURIER SERIES TO REPRESENTATION e^{-ax} from $x = -\pi$ to $x = \pi$.
- 4.

Find the Fourier series to represent the function f(x) given by f(x) = x for $0 \le x \le \pi$, and $= 2\pi - x$ for $\pi \le x \le 2\pi$.

Deduce that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}$.

5. Find the Fourier series expansion of $f(x) = 2x - x^2$ in (0, 3) and hence deduce that

1	1	1	1	Sat IL	_ π
1^{2}	2^2	3^2	$\frac{1}{4^2}$	∞	$\overline{12}$.

6.

Obtain the Fourier series expansion of $f(x) = x^2$ in (0, a). Hence show that

$$\frac{\pi^2}{6} = \frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots$$

7.

Obtain cosine and sine series for f(x) = x in the interval $0 \le x \le \pi$. Hence show that $\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} + \dots = \frac{\pi^2}{8}.$

8. Find the half range sine series for f (x) = x cos x in (0, π).
9. Obtain the half-range sine series for e^x in 0 < x < 1.